
 
Seminar Series on High Performance Computing: 
     Introduction to Parallel Programming Techniques 

 
Pragnesh Patel 
National Institute for Computational Sciences 
pragnesh@utk.edu 
Jan 28, 2014 
 



Acknowledgement:  
§  Florent Nolot, “Introduction to Parallel 

Computing”, Université de Reims Champagne-
Ardenne w/some modifications and 
augmentations by Pragnesh Patel 



Introduction to Parallel Programming Techniques Page 3 

Overview 

!  The basics of parallel computing 
!  Parallel concepts and terminology 
!  Parallel memory architectures 
!  Programming models  
!  Designing Parallel Programs  



Introduction to Parallel Programming Techniques Page 4 

What is Parallel Computing? (1) 

!  Traditionally, software has been written for serial 
computation:  

–  To be run on a single computer having a single Central 
Processing Unit (CPU);  

–  A problem is broken into a discrete series of instructions.  
–  Instructions are executed one after another.  
–  Only one instruction may execute at any moment in time.  



Introduction to Parallel Programming Techniques Page 5 

What is Parallel Computing? (2) 

!  In the simplest sense, parallel computing is the simultaneous use of 
multiple compute resources to solve a computational problem.  

–  To be run using multiple CPUs  
–  A problem is broken into discrete parts that can be solved concurrently  
–  Each part is further broken down to a series of instructions  

!  Instructions from each part execute simultaneously on different CPUs  



Introduction to Parallel Programming Techniques Page 6 

Why Parallel Computing? (1) 

!  This is a legitime question! Parallel computing is 
complex on any aspect! 

!  The primary reasons for using parallel computing:  
–  Save time - wall clock time  
–  Solve larger problems  
–  Provide concurrency (do multiple things at the same time)  



Introduction to Parallel Programming Techniques Page 7 

Why Parallel Computing? (2) 

!  Other reasons might include:  
–  Taking advantage of non-local resources - using available 

compute resources on a wide area network, or even the 
Internet when local compute resources are scarce.  

–  Cost savings - using multiple "cheap" computing resources. 
–  Overcoming memory constraints - single computers have 

very finite memory resources. For large problems, using the 
memories of multiple computers may overcome this 
obstacle.  



Introduction to Parallel Programming Techniques Page 8 

Limitations of Serial Computing 

!  Limits to serial computing - both physical and practical reasons pose 
significant constraints to simply building ever faster serial computers. 

!  Transmission speeds - the speed of a serial computer is directly 
dependent upon how fast data can move through hardware. Absolute 
limits are the speed of light (30 cm/nanosecond) and the transmission 
limit of copper wire (9 cm/nanosecond). Increasing speeds necessitate 
increasing proximity of processing elements.  

!  Limits to miniaturization - processor technology is allowing an 
increasing number of transistors to be placed on a chip. However, even 
with molecular or atomic-level components, a limit will be reached on 
how small components can be.  

!  Economic limitations - it is increasingly expensive to make a single 
processor faster. Using a larger number of moderately fast commodity 
processors to achieve the same (or better) performance is less 
expensive.  



Introduction to Parallel Programming Techniques Page 9 

Moore’s Law 

!  The number of transistors 
on integrated circuits 
doubles approx every 2 
years.  

!  Chip performance double 
every 18-24 months. 

!  Power consumption is 
proportional to frequency.  

!  Clock speed saturates  
    at 3 to 4 GHz. (End of free 
lunch. Future is parallel.) 



Introduction to Parallel Programming Techniques Page 10 

Parallel Computing: Resources 

!  The compute resources can include:  
–  A single computer with multiple processors;  
–  A single computer with (multiple) processor(s) and some 

specialized computer resources (GPU, FPGA, MIC …) 
–  An arbitrary number of computers connected by a network;  
–  A combination of above.  



Introduction to Parallel Programming Techniques Page 11 

Parallel Computing: The computational problem  

!  The computational problem usually demonstrates 
characteristics such as the ability to be:  

–  Broken apart into discrete pieces of work that can be solved 
simultaneously;  

–  Execute multiple program instructions at any moment in 
time;  

–  Solved in less time with multiple compute resources than 
with a single compute resource.  



Introduction to Parallel Programming Techniques Page 12 

The future 

!  During the past 10 years, the trends indicated by ever 
faster networks, distributed systems, and multi-
processor computer architectures (even at the 
desktop level) clearly show that parallelism is the 
future of computing. 

!  It will be multi-forms, mixing general purpose 
solutions (your PC…) and very speciliazed solutions 
as IBM Power, Intel MIC, GPGPU from Nvidia and 
others… 



Concepts and Terminology 



Introduction to Parallel Programming Techniques Page 14 

Von Neumann Architecture 

!  For over 40 years, virtually all computers have 
followed a common machine model known as the von 
Neumann computer. Named after the Hungarian 
mathematician John von Neumann. 

!  A von Neumann computer uses the stored-program 
concept. The CPU executes a stored program that 
specifies a sequence of read and write operations on 
the memory.  

 



Introduction to Parallel Programming Techniques Page 15 

Basic Design 

!  Basic design 
–  Memory is used to store both 

program and data instructions  
–  Program instructions are coded data 

which tell the computer to do 
something  

–  Data is simply information to be used 
by the program  

!  A central processing unit (CPU) 
gets instructions and/or data from 
memory, decodes the instructions 
and then sequentially performs 
them.  

Instruction and Data 



Introduction to Parallel Programming Techniques Page 16 

Flynn's Classical Taxonomy 

!  There are different ways to classify parallel 
computers. One of the more widely used 
classifications, in use since 1966, is called Flynn's 
Taxonomy.  

!  Flynn's taxonomy distinguishes multi-processor 
computer architectures according to how they can be 
classified along the two independent dimensions of 
Instruction and Data. Each of these dimensions can 
have only one of two possible states: Single or 
Multiple.  



Introduction to Parallel Programming Techniques Page 17 

Flynn Matrix 

!  The matrix below defines the 4 possible 
classifications according to Flynn  



Introduction to Parallel Programming Techniques Page 18 

Single Instruction, Single Data (SISD) 

!  A serial (non-parallel) computer  
!  Single instruction: only one instruction 

stream is being acted on by the CPU 
during any one clock cycle  

!  Single data: only one data stream is 
being used as input during any one clock 
cycle  

!  Deterministic execution  
!  This is the oldest and until recently, the 

most prevalent form of computer  
!  Examples: most PCs, single CPU 

workstations and mainframes  



Introduction to Parallel Programming Techniques Page 19 

Single Instruction, Multiple Data (SIMD) 
!  A type of parallel computer  
!  Single instruction: All processing units execute the same instruction at any given 

clock cycle  
!  Multiple data: Each processing unit can operate on a different data element  
!  This type of machine typically has an instruction dispatcher, a very high-

bandwidth internal network, and a very large array of very small-capacity 
instruction units.  

!  Best suited for specialized problems characterized by a high degree of 
regularity,such as image processing.  

!  Synchronous (lockstep) and deterministic execution  
!  Two varieties: Processor Arrays and Vector Pipelines  
!  Examples:  

–  Processor Arrays: Connection Machine CM-2, Maspar MP-1, MP-2  
–  Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2, Hitachi S820 

P=Processor 



Introduction to Parallel Programming Techniques Page 20 

Multiple Instruction, Single Data (MISD) 

!  A single data stream is fed into multiple processing units.  
!  Each processing unit operates on the data independently via 

independent instruction streams.  
!  Few actual examples of this class of parallel computer have 

ever existed. One is the experimental Carnegie-Mellon C.mmp 
computer (1971).  

!  Some conceivable uses might be:  
–  multiple frequency filters operating on a single signal stream  

!  multiple cryptography algorithms attempting to crack a single 
coded message. 

P=Processor 



Introduction to Parallel Programming Techniques Page 21 

Multiple Instruction, Multiple Data (MIMD) 

!  Currently, the most common type of parallel computer. Most 
modern computers fall into this category.  

!  Multiple Instruction: every processor may be executing a 
different instruction stream  

!  Multiple Data: every processor may be working with a different 
data stream  

!  Execution can be synchronous or asynchronous, deterministic 
or non-deterministic  

!  Examples: most current supercomputers, networked parallel 
computer "grids" and multi-processor SMP computers - 
including some types of PCs.  

P=Processor 



Introduction to Parallel Programming Techniques Page 22 

SPMD 

!  Another type is SPMD(Single Program Multiple Data), 
special case of MIMD.  

!  SPMD execution happens when a MIMD computer is 
programmed to have the same set of instructions per 
processor. 

!  With SPMD computers, while the processors are running 
the same code segment, each processor can run that 
code segment asynchronously.  

!  An example of execution on a SPMD computer. 
–  One processor may take a certain branch of the if statement, and 

another processor may take a different branch of the same if 
statement. 

–  Hence, even though each processor has the same set of 
instructions, those instructions may be evaluated in a different order 
from one processor to the next.  



Parallel Computer Memory Architectures 



Introduction to Parallel Programming Techniques Page 24 

Memory architectures 

!  Shared Memory 
!  Distributed Memory 
!  Hybrid Distributed-Shared Memory 
!  GPU Memory Model 

RAM 



Introduction to Parallel Programming Techniques Page 25 

Shared Memory 

!  Shared memory parallel computers vary widely, but generally 
have in common the ability for all processors to access all 
memory as global address space.  

!  Multiple processors can operate independently but share the 
same memory resources.  

!  Changes in a memory location effected by one processor are 
visible to all other processors.  

!  Shared memory machines can be divided into two main classes 
based upon memory access times: UMA and NUMA.  

Nautilus@NICS 



Introduction to Parallel Programming Techniques Page 26 

Shared Memory : UMA vs. NUMA 

!  Uniform Memory Access (UMA):  
–  Most commonly represented today by Symmetric Multiprocessor 

(SMP) machines  
–  Identical processors  
–  Equal access and access times to memory  
–  Sometimes called CC-UMA - Cache Coherent UMA. Cache 

coherent means if one processor updates a location in shared 
memory, all the other processors know about the update. Cache 
coherency is accomplished at the hardware level.  

!  Non-Uniform Memory Access (NUMA):  
–  Often made by physically linking two or more SMPs  
–  One SMP can directly access memory of another SMP  
–  Not all processors have equal access time to all memories  
–  Memory access across link is slower  
–  If cache coherency is maintained, then may also be called CC-

NUMA - Cache Coherent NUMA  



Introduction to Parallel Programming Techniques Page 27 

Shared Memory: Pro and Con 

!  Advantages 
–  Global address space provides a user-friendly programming 

perspective to memory  
–  Data sharing between tasks is both fast and uniform due to the 

proximity of memory to CPUs  
!  Disadvantages:  

–  Primary disadvantage is the lack of scalability between memory 
and CPUs. Adding more CPUs can geometrically increases traffic 
on the shared memory-CPU path, and for cache coherent systems, 
geometrically increase traffic associated with cache/memory 
management.  

–  Programmer responsibility for synchronization constructs that 
insure "correct" access of global memory.  

–  Expense: it becomes increasingly difficult and expensive to design 
and produce shared memory machines with ever increasing 
numbers of processors.  



Introduction to Parallel Programming Techniques Page 28 

Distributed Memory 

!  Distributed memory systems require a communication network 
to connect inter-processor memory.  

!  Processors have their own local memory. No concept of global 
address space across all processors.  

!  When a processor needs access to data in another processor, it 
is usually the task of the programmer to explicitly define how 
and when data is communicated. Synchronization between 
tasks is likewise the programmer's responsibility.  

!  The network "fabric" used for data transfer varies widely, though 
it can can be as simple as Ethernet. 



Introduction to Parallel Programming Techniques Page 29 

Distributed Memory: Pro and Con 

!  Advantages 
–  Memory is scalable with number of processors. Increase the 

number of processors and the size of memory increases 
proportionately.  

–  Each processor can rapidly access its own memory without 
interference and without the overhead incurred with trying to 
maintain cache coherency.  

–  Cost effectiveness: can use commodity, off-the-shelf processors 
and networking.  

!  Disadvantages 
–  The programmer is responsible for many of the details 

associated with data communication between processors.  
–  It may be difficult to map existing data structures, based on global 

memory, to this memory organization.  
–  Non-uniform memory access (NUMA) times  



Introduction to Parallel Programming Techniques Page 30 

Hybrid Distributed-Shared Memory 

Comparison of Shared and Distributed Memory Architectures  

Architecture CC-UMA CC-NUMA Distributed 

Examples SMPs  
Sun Vexx  
DEC/Compaq  
SGI Challenge  
IBM POWER3  

Bull NovaScale 
SGI Origin  
Sequent  
HP Exemplar  
DEC/Compaq  
IBM POWER4 (MCM)  

Cray T3E  
Maspar  
IBM SP2 
IBM BlueGene 

Communications MPI  
Threads  
OpenMP  
shmem  

MPI  
Threads  
OpenMP  
shmem  

MPI  

Scalability  to 10s of processors to 100s of processors  to 1000s of processors  

Draw Backs Memory-CPU bandwidth  Memory-CPU bandwidth 
Non-uniform access times  

System administration  
Programming is hard to 
develop and maintain  

Software Availability many 1000s ISVs  many 1000s ISVs  100s ISVs  

Summarizing a few of the key characteristics of shared and 
distributed memory machines  



Introduction to Parallel Programming Techniques Page 31 

Hybrid Distributed-Shared Memory 
!  The largest and fastest computers in the world today employ both 

shared and distributed memory architectures. 

!  The shared memory component is usually a cache coherent SMP 
machine. Processors on a given SMP can address that machine's 
memory as global.  

!  Network communications are required to move data from one SMP to 
another.  

!  Current trends seem to indicate that this type of memory architecture 
will continue to prevail and increase at the high end of computing for 
the foreseeable future.  

!  Advantages and Disadvantages: whatever is common to both shared 
and distributed memory architectures.  

Kraken@NICS 



Introduction to Parallel Programming Techniques Page 32 

CPU-GPU together 



Introduction to Parallel Programming Techniques Page 33 

GPU memory model 

!  GPU has much more aggressive memory model. 



Parallel Programming Models 



Introduction to Parallel Programming Techniques Page 35 

Parallel programming models 

!  Overview 
!  Shared Memory Model 
!  Threads Model 
!  Message Passing Model 
!  Data Parallel Model 
!  Task Parallel Model 
!  Other Models 



Introduction to Parallel Programming Techniques Page 36 

Overview 

!  There are several parallel programming models in 
common use:  

–  Shared Memory  
–  Threads  
–  Message Passing  
–  Data Parallel  
–  Task Parallel 
–  Hybrid  

!  Parallel programming models exist as an abstraction 
above hardware and memory architectures.  



Introduction to Parallel Programming Techniques Page 37 

Overview 

!  Although it might not seem apparent, these models 
are NOT specific to a particular type of machine or 
memory architecture. In fact, any of these models can 
(theoretically) be implemented on any underlying 
hardware. 

!  Which model to use is often a combination of what is 
available and personal choice. There is no "best" 
model, although there certainly are better 
implementations of some models over others.  

!  The following sections describe each of the models 
mentioned above, and also discuss some of their 
actual implementations.  

 



Introduction to Parallel Programming Techniques Page 38 

Shared Memory Model 

!  In the shared-memory programming model, tasks share a 
common address space(Global Address Space), which they 
read and write asynchronously.  

!  Various mechanisms such as locks / semaphores may be used 
to control access to the shared memory.  

!  An advantage of this model from the programmer's point of view 
is that the notion of data "ownership" is lacking, so there is no 
need to specify explicitly the communication of data between 
tasks. Program development can often be simplified.  

!  An important disadvantage in terms of performance is that it 
becomes more difficult to understand and manage data locality. 

Shared memory architecture ? 



Introduction to Parallel Programming Techniques Page 39 

Threads Model 

!  In the threads model of parallel programming, a single process can have 
multiple, concurrent execution paths.  

!  Perhaps the most simple analogy that can be used to describe threads is the 
concept of a single program that includes a number of subroutines:  

–  The main program a.out is scheduled to run by the native operating system. a.out 
loads and acquires all of the necessary system and user resources to run.  

–  a.out performs some serial work, and then creates a number of tasks (threads) that 
can be scheduled and run by the operating system concurrently.  

–  Each thread has local data, but also, shares the entire resources of a.out. This 
saves the overhead associated with replicating a program's resources for each thread. 
Each thread also benefits from a global memory view because it shares the memory 
space of a.out.  

–  A thread's work may best be described as a subroutine within the main program. Any 
thread can execute any subroutine at the same time as other threads.  

–  Threads communicate with each other through global memory (updating address 
locations). This requires synchronization constructs to insure that more than one 
thread is not updating the same global address at any time.  

–  Threads can come and go, but a.out remains present to provide the necessary shared 
resources until the application has completed.  

!  Threads are commonly associated with shared memory architectures and 
operating systems.  



Introduction to Parallel Programming Techniques Page 40 

Threads Model Implementations 

!  From a programming perspective, threads implementations commonly comprise:  
–  A library of subroutines that are called from within parallel source code  
–  A set of compiler directives embedded in either serial or parallel source code  

!  In both cases, the programmer is responsible for determining all parallelism.  
!  Threaded implementations are not new in computing. Historically, hardware 

vendors have implemented their own proprietary versions of threads. These 
implementations differed substantially from each other making it difficult for 
programmers to develop portable threaded applications.  

!  Unrelated standardization efforts have resulted in two very different 
implementations of threads: POSIX Threads and OpenMP.  

!  POSIX Threads  
–  Library based; requires parallel coding  
–  Specified by the IEEE POSIX 1003.1c standard (1995).  
–  C Language only  
–  Commonly referred to as Pthreads.  
–  Most hardware vendors now offer Pthreads in addition to their proprietary threads 

implementations.  
–  Very explicit parallelism; requires significant programmer attention to detail.  



Introduction to Parallel Programming Techniques Page 41 

Threads Model: OpenMP 

!  OpenMP  
–  Compiler directive based; can use serial code  
–  Jointly defined and endorsed by a group of major computer 

hardware and software vendors. The OpenMP Fortran API was 
released October 28, 1997. The C/C++ API was released in late 
1998.  

–  Portable / multi-platform, including Unix and Windows NT platforms  
–  Available in C/C++ and Fortran implementations  
–  Can be very easy and simple to use - provides for "incremental 

parallelism"  
!  Microsoft has its own implementation for threads, which is not 

related to the UNIX POSIX standard or OpenMP.  



Introduction to Parallel Programming Techniques Page 42 

Message Passing Model 

!  The message passing model demonstrates the 
following characteristics:  

–  A set of tasks that use their own local memory during 
computation. Multiple tasks can reside on the same physical 
machine as well across an arbitrary number of machines.  

–  Tasks exchange data through communications by sending 
and receiving messages.  

–  Data transfer usually requires cooperative operations to be 
performed by each process. For example, a send operation 
must have a matching receive operation.  



Introduction to Parallel Programming Techniques Page 43 

Message Passing Model Implementations: MPI 

!  MPI is now the "de facto" industry standard for message passing, 
replacing virtually all other message passing implementations used for 
production work. Most, if not all of the popular parallel computing 
platforms offer at least one implementation of MPI. A few offer a full 
implementation of MPI-2.  

!  For shared memory architectures, MPI implementations usually don't 
use a network for task communications. Instead, they use shared 
memory (memory copies) for performance reasons.  

 



Introduction to Parallel Programming Techniques Page 44 

Data Parallelism 

!  The same code segment runs concurrently on each processor, 
but each processor is assigned its own part of the data to work 
on.  

–  Do loops (in Fortran) define the parallelism.  
–  The iterations must be independent of each other.  
–  Data parallelism is called "fine grain parallelism" because the 

computational work is spread into many small subtasks. 
!  Example 

–  Dense linear algebra, such as matrix multiplication, is a 
perfect candidate for data parallelism.  



Introduction to Parallel Programming Techniques Page 45 

Original Sequential Code Parallel Code 
  
DO K=1,N  
DO J=1,N  
DO I=1,N  
C(I,J) = C(I,J) + 
A(I,K)*B(K,J)  
END DO  
END DO  
END DO  
   

!$OMP PARALLEL DO  
DO K=1,N  
DO J=1,N  
DO I=1,N  
C(I,J) = C(I,J) + 
A(I,K)*B(K,J)  
END DO  
END DO  
END DO  
!$END PARALLEL DO 

Data Parallelism: Example 



Introduction to Parallel Programming Techniques Page 46 

Task Parallelism 

§  Task parallelism may be thought of as the opposite of data 
parallelism.  

§  Instead of the same operations being performed on different 
parts of the data, each process performs different operations.  

§  You can use task parallelism when your program can be split 
into independent pieces, often subroutines, that can be 
assigned to different processors and run concurrently.  

§  Task parallelism is called "coarse grain" parallelism because the 
computational work is spread into just a few subtasks.  

§  More code is run in parallel because the parallelism is 
implemented at a higher level than in data parallelism.  

§  Task parallelism is often easier to implement and has less 
overhead than data parallelism. 



Introduction to Parallel Programming Techniques Page 47 

Task Parallelism 

!  The abstract code shown in the diagram is decomposed 
into 4 independent code segments that are labeled A, B, 
C, and D. The right hand side of the diagram illustrates the 
4 code segments running concurrently. 



Introduction to Parallel Programming Techniques Page 48 

Original Code Parallel Code 
program main  
   
  
code segment labeled A  
  
code segment labeled B  
  
code segment labeled C  
  
code segment labeled D  
  
  
end 

program main  
   
  
code segment labeled A  
  
code segment labeled B  
  
code segment labeled C  
  
code segment labeled D  
  
  
end 

program main  
!$OMP PARALLEL  
!$OMP SECTIONS  
code segment labeled A  
!$OMP SECTION  
code segment labeled B  
!$OMP SECTION  
code segment labeled C  
!$OMP SECTION  
code segment labeled D  
!$OMP END SECTIONS  
!$OMP END PARALLEL  
end 

Task Parallelism: Example 



Introduction to Parallel Programming Techniques Page 49 

OpenMP Style of Parallelism 

!  can be done incrementally as follows: 
-    Parallelize the most computationally intensive loop.  
-  Compute performance of the code.  
-  If performance is not satisfactory, parallelize another loop.  
-  Repeat steps 2 and 3 as many times as needed.  

!  The ability to perform incremental parallelism is 
considered a positive feature of data parallelism.  



Introduction to Parallel Programming Techniques Page 50 

Other Models 

!  Other parallel programming models besides those previously 
mentioned certainly exist, and will continue to evolve along with 
the ever changing world of computer hardware and software. 

!  Only three of the more common ones are mentioned here. 
–  Hybrid 
–  Single Program Multiple Data 
–  Multiple Program Multiple Data 



Introduction to Parallel Programming Techniques Page 51 

Hybrid 

!  In this model, any two or more parallel programming models are 
combined.  

!  Currently, a common example of a hybrid model is the 
combination of the message passing model (MPI) with either the 
threads model (POSIX threads) or the shared memory model 
(OpenMP). This hybrid model lends itself well to the increasingly 
common hardware environment of networked SMP machines.  

!  Another common example of a hybrid model is combining data 
parallel with message passing 



Introduction to Parallel Programming Techniques Page 52 

Single Program Multiple Data (SPMD) 

!  Single Program Multiple Data (SPMD):  
!  SPMD is actually a "high level" programming model that can be 

built upon any combination of the previously mentioned parallel 
programming models.  

!  A single program is executed by all tasks simultaneously.  
!  At any moment in time, tasks can be executing the same or 

different instructions within the same program.  
!  SPMD programs usually have the necessary logic programmed 

into them to allow different tasks to branch or conditionally 
execute only those parts of the program they are designed to 
execute. That is, tasks do not necessarily have to execute the 
entire program - perhaps only a portion of it.  

!  All tasks may use different data  



Introduction to Parallel Programming Techniques Page 53 

Multiple Program Multiple Data (MPMD) 

!  Multiple Program Multiple Data (MPMD):  
!  Like SPMD, MPMD is actually a "high level" 

programming model that can be built upon any 
combination of the previously mentioned parallel 
programming models.  

!  MPMD applications typically have multiple executable 
object files (programs). While the application is being 
run in parallel, each task can be executing the same 
or different program as other tasks.  

!  All tasks may use different data  



Designing Parallel Programs 



Introduction to Parallel Programming Techniques Page 55 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 56 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 57 

!  Designing and developing parallel programs has 
characteristically been a very manual process. The programmer 
is typically responsible for both identifying and actually 
implementing parallelism.  

!  Very often, manually developing parallel codes is a time 
consuming, complex, error-prone and iterative process.  

!  For a number of years now, various tools have been available to 
assist the programmer with converting serial programs into 
parallel programs. The most common type of tool used to 
automatically parallelize a serial program is a parallelizing 
compiler or pre-processor.  



Introduction to Parallel Programming Techniques Page 58 

!  A parallelizing compiler generally works in two different ways:  
–  Fully Automatic  

-  The compiler analyzes the source code and identifies opportunities for 
parallelism.  

-  The analysis includes identifying inhibitors to parallelism and possibly a 
cost weighting on whether or not the parallelism would actually improve 
performance.  

-  Loops (do, for) loops are the most frequent target for automatic 
parallelization.  

–  Programmer Directed  
-  Using "compiler directives" or possibly compiler flags, the programmer 

explicitly tells the compiler how to parallelize the code.  
-  May be able to be used in conjunction with some degree of automatic 

parallelization also.  



Introduction to Parallel Programming Techniques Page 59 

!  If you are beginning with an existing serial code and have time 
or budget constraints, then automatic parallelization may be the 
answer. However, there are several important caveats that 
apply to automatic parallelization:  

–  Wrong results may be produced  
–  Performance may actually degrade  
–  Much less flexible than manual parallelization  
–  Limited to a subset (mostly loops) of code  
–  May actually not parallelize code if the analysis suggests there are 

inhibitors or the code is too complex  
–  Most automatic parallelization tools are for Fortran  

!  The remainder of this section applies to the manual method of 
developing parallel codes. 



Introduction to Parallel Programming Techniques Page 60 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 61 

!  Undoubtedly, the first step in developing parallel 
software is to first understand the problem that you 
wish to solve in parallel. If you are starting with a 
serial program, this necessitates understanding the 
existing code also.  

!  Before spending time in an attempt to develop a 
parallel solution for a problem, determine whether or 
not the problem is one that can actually be 
parallelized.  



Introduction to Parallel Programming Techniques Page 62 

Example of Parallelizable Problem 

    Calculate the potential energy for each of several 
thousand independent conformations of a molecule. 
When done, find the minimum energy conformation. 

 
 
!  This problem is able to be solved in parallel. Each of 

the molecular conformations is independently 
determinable. The calculation of the minimum energy 
conformation is also a parallelizable problem.  



Introduction to Parallel Programming Techniques Page 63 

Example of a Non-parallelizable Problem 

    Calculation of the Fibonacci series 
(1,1,2,3,5,8,13,21,...) by use of the formula:  

    F(k + 2) = F(k + 1) + F(k) 

!  This is a non-parallelizable problem because the 
calculation of the Fibonacci sequence as shown 
would entail dependent calculations rather than 
independent ones. The calculation of the k + 2 value 
uses those of both k + 1 and k. These three terms 
cannot be calculated independently and therefore, 
not in parallel.  



Introduction to Parallel Programming Techniques Page 64 

Identify the program's hotspots 

!  Know where most of the real work is being done. The 
majority of scientific and technical programs usually 
accomplish most of their work in a few places.  

!  Profilers and performance analysis tools can help 
here  

!  Focus on parallelizing the hotspots and ignore those 
sections of the program that account for little CPU 
usage. 



Introduction to Parallel Programming Techniques Page 65 

Identify bottlenecks in the program 

!  Are there areas that are disproportionately slow, or 
cause parallelizable work to halt or be deferred? For 
example, I/O is usually something that slows a 
program down.  

!  May be possible to restructure the program or use a 
different algorithm to reduce or eliminate 
unnecessary slow areas 



Introduction to Parallel Programming Techniques Page 66 

Other considerations 

!  Identify inhibitors to parallelism. One common class 
of inhibitor is data dependence, as demonstrated by 
the Fibonacci sequence above.  

!  Investigate other algorithms if possible. This may 
be the single most important consideration when 
designing a parallel application.  



Introduction to Parallel Programming Techniques Page 67 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 68 

!  One of the first steps in designing a parallel program 
is to break the problem into discrete "chunks" of work 
that can be distributed to multiple tasks. This is 
known as decomposition or partitioning.  

!  There are two basic ways to partition computational 
work among parallel tasks: 

–  domain decomposition 
and 

–  functional decomposition  

 



Introduction to Parallel Programming Techniques Page 69 

Domain Decomposition 

!  In this type of partitioning, the data associated with a 
problem is decomposed. Each parallel task then 
works on a portion of of the data. 



Introduction to Parallel Programming Techniques Page 70 

Partitioning Data 

!  There are different ways to partition data 



Introduction to Parallel Programming Techniques Page 71 

Functional Decomposition 

!  In this approach, the focus is on the computation that is to be 
performed rather than on the data manipulated by the 
computation. The problem is decomposed according to the work 
that must be done. Each task then performs a portion of the 
overall work. 

!  Functional decomposition lends itself well to problems that can 
be split into different tasks. For example 

–  Ecosystem Modeling 
–  Signal Processing 
–  Climate Modeling 



Introduction to Parallel Programming Techniques Page 72 

Ecosystem Modeling 

!  Each program calculates the population of a given 
group, where each group's growth depends on that of 
its neighbors. As time progresses, each process 
calculates its current state, then exchanges 
information with the neighbor populations. All tasks 
then progress to calculate the state at the next time 
step.  



Introduction to Parallel Programming Techniques Page 73 

Climate Modeling 

!  Each model component can be thought of as a separate task. 
Arrows represent exchanges of data between components 
during computation: the atmosphere model generates wind 
velocity data that are used by the ocean model, the ocean 
model generates sea surface temperature data that are used by 
the atmosphere model, and so on. 

!  Combining these two types of problem decomposition is 
common and natural.  



Introduction to Parallel Programming Techniques Page 74 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 75 

Who Needs Communications? 

!  The need for communications between tasks depends upon your 
problem 

!  You DON'T need communications  
–  Some types of problems can be decomposed and executed in parallel with 

virtually no need for tasks to share data. For example, imagine an image 
processing operation where every pixel in a black and white image needs to 
have its color reversed. The image data can easily be distributed to multiple 
tasks that then act independently of each other to do their portion of the 
work.  

–  These types of problems are often called embarrassingly parallel because 
they are so straight-forward. Very little inter-task communication is required.  

!  You DO need communications  
–  Most parallel applications are not quite so simple, and do require tasks to 

share data with each other. For example, a 3-D heat diffusion problem 
requires a task to know the temperatures calculated by the tasks that have 
neighboring data. Changes to neighboring data has a direct effect on that 
task's data.  



Introduction to Parallel Programming Techniques Page 76 

Factors to Consider (1)  

!  There are a number of important factors to consider 
when designing your program's inter-task 
communications 

!  Cost of communications  
–  Inter-task communication virtually always implies overhead.  
–  Machine cycles and resources that could be used for 

computation are instead used to package and transmit data.  
–  Communications frequently require some type of 

synchronization between tasks, which can result in tasks 
spending time "waiting" instead of doing work.  

–  Competing communication traffic can saturate the available 
network bandwidth, further aggravating performance 
problems.  



Introduction to Parallel Programming Techniques Page 77 

Factors to Consider (2) 

!  Latency vs. Bandwidth  
–  latency is the time it takes to send a minimal (0 byte) 

message from point A to point B. Commonly expressed as 
microseconds.  

–  bandwidth is the amount of data that can be communicated 
per unit of time. Commonly expressed as megabytes/sec.  

–  Sending many small messages can cause latency to 
dominate communication overheads. Often it is more 
efficient to package small messages into a larger message, 
thus increasing the effective communications bandwidth.  



Introduction to Parallel Programming Techniques Page 78 

Factors to Consider (3) 

!  Synchronous vs. asynchronous communications  
–  Synchronous communications require some type of "handshaking" 

between tasks that are sharing data. This can be explicitly 
structured in code by the programmer, or it may happen at a lower 
level unknown to the programmer.  

–  Synchronous communications are often referred to as blocking 
communications since other work must wait until the 
communications have completed.  

–  Asynchronous communications allow tasks to transfer data 
independently from one another. For example, task 1 can prepare 
and send a message to task 2, and then immediately begin doing 
other work. When task 2 actually receives the data doesn't matter.  

–  Asynchronous communications are often referred to as non-
blocking communications since other work can be done while the 
communications are taking place.  

–  Interleaving computation with communication is the single greatest 
benefit for using asynchronous communications.  



Introduction to Parallel Programming Techniques Page 79 

Factors to Consider (4) 

!  Scope of communications  
–  Knowing which tasks must communicate with each other is 

critical during the design stage of a parallel code. Both of the 
two scopings described below can be implemented 
synchronously or asynchronously.  

–  Point-to-point - involves two tasks with one task acting as 
the sender/producer of data, and the other acting as the 
receiver/consumer.  

–  Collective - involves data sharing between more than two 
tasks, which are often specified as being members in a 
common group, or collective. 



Introduction to Parallel Programming Techniques Page 80 

Collective Communications 

!  Examples 



Introduction to Parallel Programming Techniques Page 81 

Factors to Consider (5) 

!  Overhead and Complexity 



Introduction to Parallel Programming Techniques Page 82 

Factors to Consider (6) 

!  Finally, realize that this is only a partial list of 
things to consider!!!  



Introduction to Parallel Programming Techniques Page 83 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 84 

Types of Synchronization 

!  Barrier  
–  Usually implies that all tasks are involved  
–  Each task performs its work until it reaches the barrier. It then stops, or "blocks".  
–  When the last task reaches the barrier, all tasks are synchronized.  
–  What happens from here varies. Often, a serial section of work must be done. In other 

cases, the tasks are automatically released to continue their work.  
!  Lock / semaphore  

–  Can involve any number of tasks  
–  Typically used to serialize (protect) access to global data or a section of code. Only 

one task at a time may use (own) the lock / semaphore / flag.  
–  The first task to acquire the lock "sets" it. This task can then safely (serially) access the 

protected data or code.  
–  Other tasks can attempt to acquire the lock but must wait until the task that owns the 

lock releases it.  
–  Can be blocking or non-blocking  

!  Synchronous communication operations  
–  Involves only those tasks executing a communication operation  
–  When a task performs a communication operation, some form of coordination is 

required with the other task(s) participating in the communication. For example, before 
a task can perform a send operation, it must first receive an acknowledgment from the 
receiving task that it is OK to send.  



Introduction to Parallel Programming Techniques Page 85 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 86 

Definitions 

!  A dependence exists between program statements 
when the order of statement execution affects the 
results of the program.  

!  A data dependence results from multiple use of the 
same location(s) in storage by different tasks.  

!  Dependencies are important to parallel programming 
because they are one of the primary inhibitors to 
parallelism. 



Introduction to Parallel Programming Techniques Page 87 

Examples (1): Loop carried data dependence 

!  The value of A(J-1) must be computed before the 
value of A(J), therefore A(J) exhibits a data 
dependency on A(J-1). Parallelism is inhibited.  

!  If Task 2 has A(J) and task 1 has A(J-1), computing 
the correct value of A(J) necessitates:  

–  Distributed memory architecture - task 2 must obtain the 
value of A(J-1) from task 1 after task 1 finishes its 
computation  

–  Shared memory architecture - task 2 must read A(J-1) after 
task 1 updates it 

DO 500 J = MYSTART,MYEND  
  A(J) = A(J-1) * 2.0500 

CONTINUE 



Introduction to Parallel Programming Techniques Page 88 

Examples (2): Loop independent data dependence 

!  As with the previous example, parallelism is inhibited. The value 
of Y is dependent on:  

–  Distributed memory architecture - if or when the value of X is 
communicated between the tasks.  

–  Shared memory architecture - which task last stores the value of X.  
!  Although all data dependencies are important to identify when 

designing parallel programs, loop carried dependencies are 
particularly important since loops are possibly the most common 
target of parallelization efforts.  

task 1        task 2 
------        ------ 
X = 2         X = 4   
.             .   
.             . 
Y = X**2      Y = X**3  



Introduction to Parallel Programming Techniques Page 89 

How to Handle Data Dependencies? 

!  Distributed memory architectures - communicate 
required data at synchronization points.  

!  Shared memory architectures -synchronize read/write 
operations between tasks.  



Introduction to Parallel Programming Techniques Page 90 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 91 

Definition 

!  Load balancing refers to the practice of distributing work among 
tasks so that all tasks are kept busy all of the time. It can be 
considered a minimization of task idle time.  

!  Load balancing is important to parallel programs for 
performance reasons. For example, if all tasks are subject to a 
barrier synchronization point, the slowest task will determine the 
overall performance.  



Introduction to Parallel Programming Techniques Page 92 

How to Achieve Load Balance? (1) 

!  Equally partition the work each task receives  
–  For array/matrix operations where each task performs similar 

work, evenly distribute the data set among the tasks.  
–  For loop iterations where the work done in each iteration is 

similar, evenly distribute the iterations across the tasks.  
–  If a heterogeneous mix of machines with varying 

performance characteristics are being used, be sure to use 
some type of performance analysis tool to detect any load 
imbalances. Adjust work accordingly. 



Introduction to Parallel Programming Techniques Page 93 

How to Achieve Load Balance? (2) 

!  Use dynamic work assignment  
–  Certain classes of problems result in load imbalances even if data 

is evenly distributed among tasks:  
-  Sparse arrays - some tasks will have actual data to work on while 

others have mostly "zeros".  
-  Adaptive grid methods - some tasks may need to refine their mesh 

while others don't.  
-  N-body simulations - where some particles may migrate to/from their 

original task domain to another task's; where the particles owned by 
some tasks require more work than those owned by other tasks.  

–  When the amount of work each task will perform is intentionally 
variable, or is unable to be predicted, it may be helpful to use a 
scheduler - task pool approach. As each task finishes its work, it 
queues to get a new piece of work.  

–  It may become necessary to design an algorithm which detects and 
handles load imbalances as they occur dynamically within the code.  



Introduction to Parallel Programming Techniques Page 94 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 95 

Definitions 

!  Computation / Communication Ratio:  
–  In parallel computing, granularity is a qualitative measure of 

the ratio of computation to communication.  
–  Periods of computation are typically separated from periods 

of communication by synchronization events. 

!  Fine grain parallelism 
!  Coarse grain parallelism 



Introduction to Parallel Programming Techniques Page 96 

Fine-grain Parallelism  

!  Relatively small amounts of computational work 
are done between communication events  

!  Low computation to communication ratio  
!  Facilitates load balancing  
!  Implies high communication overhead and less 

opportunity for performance enhancement  
!  If granularity is too fine it is possible that the 

overhead required for communications and 
synchronization between tasks takes longer 
than the computation.  



Introduction to Parallel Programming Techniques Page 97 

Coarse-grain Parallelism 

!  Relatively large amounts of 
computational work are done between 
communication/synchronization events  

!  High computation to communication 
ratio  

!  Implies more opportunity for 
performance increase  

!  Harder to load balance efficiently  



Introduction to Parallel Programming Techniques Page 98 

Which is Best? 

!  The most efficient granularity is dependent on the 
algorithm and the hardware environment in which it 
runs.  

!  In most cases the overhead associated with 
communications and synchronization is high relative 
to execution speed so it is advantageous to have 
coarse granularity.  

!  Fine-grain parallelism can help reduce overheads 
due to load imbalance.  



Introduction to Parallel Programming Techniques Page 99 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 100 

The bad News 

!  I/O operations are generally regarded as inhibitors to 
parallelism  

!  Parallel I/O systems are immature or not available for 
all platforms  

!  In an environment where all tasks see the same 
filespace, write operations will result in file overwriting  

!  Read operations will be affected by the fileserver's 
ability to handle multiple read requests at the same 
time  

!  I/O that must be conducted over the network (NFS, 
non-local) can cause severe bottlenecks 



Introduction to Parallel Programming Techniques Page 101 

The good News 

!  Some parallel file systems are available. For example:  
–  GPFS: General Parallel File System for AIX (IBM)  
–  Lustre: for Linux clusters (Cluster File Systems, Inc.)  
–  PVFS/PVFS2: Parallel Virtual File System for Linux clusters 

(Clemson/Argonne/Ohio State/others)  
–  PanFS: Panasas ActiveScale File System for Linux clusters 

(Panasas, Inc.)  
–  HP SFS: HP StorageWorks Scalable File Share. Lustre based 

parallel file system (Global File System for Linux) product from HP  
!  The parallel I/O programming interface specification for MPI has 

been available since 1996 as part of MPI-2. Vendor and "free" 
implementations are now commonly available.  



Introduction to Parallel Programming Techniques Page 102 

Some Options 

!  If you have access to a parallel file system, investigate using it. 
If you don't, keep reading...  

!  Rule #1: Reduce overall I/O as much as possible  
!  Confine I/O to specific serial portions of the job, and then use 

parallel communications to distribute data to parallel tasks. For 
example, Task 1 could read an input file and then communicate 
required data to other tasks. Likewise, Task 1 could perform 
write operation after receiving required data from all other tasks.  

!  For distributed memory systems with shared filespace, perform 
I/O in local, non-shared filespace. For example, each processor 
may have /tmp filespace which can used. This is usually much 
more efficient than performing I/O over the network to one's 
home directory.  

!  Create unique filenames for each tasks' input/output file(s)  



Introduction to Parallel Programming Techniques Page 103 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 104 

Amdahl's Law 

                            1 
speedup   =   -------- 
               1  - P 

!  If none of the code can be parallelized, P = 0 and the 
speedup = 1 (no speedup). If all of the code is 
parallelized, P = 1 and the speedup is infinite (in 
theory).  

!  If 50% of the code can be parallelized, maximum 
speedup = 2, meaning the code will run twice as fast.  

! Amdahl's Law states that potential 
program speedup is defined by the 
fraction of code (P) that can be 
parallelized: 
 



Introduction to Parallel Programming Techniques Page 105 

Amdahl's Law 

!  Introducing the number of processors performing the 
parallel fraction of work, the relationship can be 
modeled by 

!  where P = parallel fraction, N = number of processors 
and S = serial fraction  

                    1       
speedup   =   ------------ 
                P   +  S                    
               ---                     
                N 



Introduction to Parallel Programming Techniques Page 106 

Amdahl's Law 

!  It soon becomes obvious that there are limits to the 
scalability of parallelism. For example, at P = .50, .90 
and .99 (50%, 90% and 99% of the code is 
parallelizable) 

                        speedup 
           -------------------------------- 
  N        P = .50      P = .90     P = .99 
-----      -------      -------     ------- 
   10         1.82         5.26        9.17 
  100         1.98         9.17       50.25 
 1000         1.99         9.91       90.99 
10000         1.99         9.91       99.02 



Introduction to Parallel Programming Techniques Page 107 

Amdahl's Law 

!  However, certain problems demonstrate increased performance 
by increasing the problem size. For example:  

–  2D Grid Calculations     85 seconds   85% 
–  Serial fraction          15 seconds   15% 

!  We can increase the problem size by doubling the grid 
dimensions and halving the time step. This results in four times 
the number of grid points and twice the number of time steps. 
The timings then look like:  

–  2D Grid Calculations     680 seconds   97.84%     
–  Serial fraction           15 seconds    2.16%  

!  Problems that increase the percentage of parallel time with their 
size are more scalable than problems with a fixed percentage 
of parallel time.  



Introduction to Parallel Programming Techniques Page 108 

Complexity 

!  In general, parallel applications are much more complex than 
corresponding serial applications, perhaps an order of 
magnitude. Not only do you have multiple instruction streams 
executing at the same time, but you also have data flowing 
between them.  

!  The costs of complexity are measured in programmer time in 
virtually every aspect of the software development cycle:  

–  Design  
–  Coding  
–  Debugging  
–  Tuning  
–  Maintenance  

!  Adhering to "good" software development practices is essential 
when when working with parallel applications - especially if 
somebody besides you will have to work with the software. 



Introduction to Parallel Programming Techniques Page 109 

Portability 

!  Thanks to standardization in several APIs, such as MPI, POSIX 
threads, HPF and OpenMP, portability issues with parallel 
programs are not as serious as in years past. However...  

!  All of the usual portability issues associated with serial programs 
apply to parallel programs. For example, if you use vendor 
"enhancements" to Fortran, C or C++, portability will be a 
problem.  

!  Even though standards exist for several APIs, implementations 
will differ in a number of details, sometimes to the point of 
requiring code modifications in order to effect portability.  

!  Operating systems can play a key role in code portability issues.  
!  Hardware architectures are characteristically highly variable and 

can affect portability. 
!  It is becoming hard with GPU, MIC and FPGA architectures.   



Introduction to Parallel Programming Techniques Page 110 

Resource Requirements 

!  The primary intent of parallel programming is to decrease 
execution wall clock time, however in order to accomplish this, 
more CPU time is required. For example, a parallel code that 
runs in 1 hour on 8 processors actually uses 8 hours of CPU 
time.  

!  The amount of memory required can be greater for parallel 
codes than serial codes, due to the need to replicate data and 
for overheads associated with parallel support libraries and 
subsystems.  

!  For short running parallel programs, there can actually be a 
decrease in performance compared to a similar serial 
implementation. The overhead costs associated with setting up 
the parallel environment, task creation, communications and 
task termination can comprise a significant portion of the total 
execution time for short runs.  



Introduction to Parallel Programming Techniques Page 111 

Scalability 

!  The ability of a parallel program's performance to scale is a 
result of a number of interrelated factors. Simply adding more 
machines is rarely the answer.  

!  The algorithm may have inherent limits to scalability. At some 
point, adding more resources causes performance to decrease. 
Most parallel solutions demonstrate this characteristic at some 
point.  

!  Hardware factors play a significant role in scalability. Examples:  
–  Memory-cpu bus bandwidth on an SMP machine  
–  Communications network bandwidth  
–  Amount of memory available on any given machine or set of 

machines  
–  Processor clock speed  

!  Parallel support libraries and subsystems software can limit 
scalability independent of your application.  



Introduction to Parallel Programming Techniques Page 112 

Agenda 

!  Automatic vs. Manual Parallelization 
!  Understand the Problem and the Program 
!  Partitioning 
!  Communications 
!  Synchronization 
!  Data Dependencies 
!  Load Balancing 
!  Granularity 
!  I/O 
!  Limits and Costs of Parallel Programming 
!  Performance Analysis and Tuning 



Introduction to Parallel Programming Techniques Page 113 

!  As with debugging, monitoring and analyzing parallel 
program execution is significantly more of a challenge 
than for serial programs.  

!  A number of parallel tools for execution monitoring 
and program analysis are available.  

!  Some are quite useful; some are cross-platform also.  
!  One starting point: 

Performance Analysis Tools Tutorial  
!  Work remains to be done, particularly in the area of 

scalability.  



Introduction to Parallel Programming Techniques Page 114 

References 

!  http://www. cosy.univ-reims.fr/~fnolot/.../
introduction_to_parallel_computing.ppt 

!  http://www.intel.com/ 
!  http://www.wikipedia.org/ 
!  http://www.nvidia.com/ 
 
 



Introduction to Parallel Programming Techniques Page 115 

Thank you Daniel for helpful suggestions!!!  


